A Quick Introduction to Python
and Machine Learning

Ling Zhang

Apr 17th, 2019

Objective

o Help on getting started with Python

e Introduce the basic concepts of neural network and
now It Is trained

o Help on getting stated with machine learning
programming using PyTorch (or Tensorflow)

Part | — Introduction to Python
B

o What is Python

o« Commonly-used Python editors

o Data Structures in Python

o Control Structures (Selection and Loop)
o Python Functions

o Python Classes

o An Python package example: skrf

There are many Python tutorials available online. Here is an example:

https://www.w3schools.com/python/default.asp

Part | — Introduction to Python
B

o What is Python?

What is Python

EEE
o Python is a general purpose programming language
with the following nice features:
— An object-based high-level programming language
— A free software released under an open-source license
— Cross-platform: Windows, Linux/Unix, MaxOS X etc

— A very readable and concise language with clear non-verbose
syntax

— A large variety of high-quality packages are available for
various applications online and free to use

- Don’t reinvent the wheel!

Part | — Introduction to Python
B

o« Commonly-used Python editors

Python Terminal

e You can use the Python x
terminal for interactive e thar, e
computing in Python

e A preferred way Is to use
other editors like Jupyter
Notebook or PyCharm

Jupyter Notebook

I

« A web-based interactive T T —— LEAAL
computational environment N

 Can contain code, text, s
mathematics, plots and rich
media.

 Can work interactively L

« Easy to visualize results SR

« Easy to share with others

https://jupyter.org/

PyCharm

File Edit Refactor Run Tool
20190303_ASUS_PDN_Python
Project =
20190313_Data_Competition

:' v 20190303_ASUS_PDN_Python C:\U
ipynb,

Poisson-Equation-Solving-with-DL

RL-PCE-Optimization
= L

« PyCharm: easy to work with when working on a large
project containing different Python files
« Can see intermediate results in debugging mode

https://www.jetbrains.com/pycharm/

Part | — Introduction to Python
B

o Data Structures in Python

Overview of Data Structures in Python

I
» Basic Data Types in Python » In NumPy package
« Numeric type - Multi-dimensional arrays (array
Integer oriented computing)
Float
Complex » In Pandas package (discuss
Boolean Iater)
« Container . Series
List (costless insertion and append) . DataFrame
sring « Panel
Dictionary (key-value pairs for fast lookup)
Set
Tuple

A container is simply an object that holds a collection of other objects.

11

Lists, Tuple, Set, Dictionary

* List is a collection which is ordered and changeable. Allows duplicate members.
*» Tuple is a collection which is ordered and unchangeable. Allows duplicate members.
*» Set is a collection which is unordered and unindexed. No duplicate members.

* Dictionary is a collection which is unordered, changeable and indexed. No duplicate members.

*»» classmates = ["Michael', 'Bob', 'Tracy'] —»

l_iSt: *»» classmates
["Michael®, 'Bob', 'Tracy']

-rLujle: »»» classmates = ('Michael', 'Bob', 'Tracy')

*»»» 5 = set{[1, 2, 3])
Set- 33> 5
':l_.. 2.! 3}
- - . *»»» d = {"Michael': 95, 'Bob": 75, 'Tracy': 85
Dictionary: 00 ..o

a5

Attention: Python index begins with 0 !!!

Usually used in ‘for’ loop

mames = ['Michael', 'Bob', 'Tracy']
for name in names:

print{name)

12

Use NumPy for Array/Matrix Oriented Computing

» NumPy 1s a fundamental package for scientific computing. It’s an open source
alternative to Matlab.

» It provides support for homogeneous multi-dimensional arrays and matrices,
along with efficient mathematical functions for operating on these arrays.

» The performance of NumPy is closer to hardware (efficiency).

« NumPy is very convenient to use when we want to do math with a large set of
numbers.

13

NumPy Overview

B
» Create Arrays » Modify Arrays » Array Operations
« Array - Append - Max
« Linspace - Reshape « Min
= Arange = Transpose « Dot
= Other built-in = Sort/Argsort = Sum
functions « Round

» Indexing and Slicing

For a comprehensive reference of NumPy methods, refer to:

14

https://docs.scipy.org/doc/numpy/reference/routines.html

Part | — Introduction to Python
B

Control Structures (Selection and Loop)

15

If-elif-else Selection Structure in Python
B

AsSRk user

score = float({input(“Please input score (8-1808):"))

Please input score (©-188):59.8

if score »= 98:
— print{“Grade = A")
elif score »= H@:

T print(“Grade = B")

\
is necessary \
in Python! \\{ .

li¥ score »= GB:

print(Grade = D)
se;
. - ; F*)

print({ Grade =

Indentation

Grade = F

to input score (g float num between @ and 108

& Use if-elif-else statement to implement the muliti-wa)

The Nearest Rule (if else ambiguity)

The else/elif clause matches the nearest preceding if/elif clause in the same

block.

16

Iteration/Loop Structure
I

» Python provides three statements to support looping

= while statement
= for statement

» Two statements used to explicitly control looping

= break statement

= continue statement

While loop

Ask user to input score (a float number between & and 168)
score = -1 # Initialize the score as -1

while score ¢ 8 or score > 188:
score = float(input("Please input score (©-180):7))

Please input score (6-108):-292
Please input score (@-108):-1

Please input score (©-109):111
Please input score (©-100):345
Please input score (©-108):-89
Please input score (©-108):181
Please input score (B8-108):99

Use a while Loop to sum numbers from 1 to n till the sum >= 168.

sum = @ # Initialize the sum
i=1 # Initialize the number to sum

while i <= 100:
sum = sum + i

if SETE;E 100; break

i=1+1

print{“The sum 1s:", sum)
print("i =", i

Use a while loop to sum numbers from 1 to 28, bypassing 16 and 11.

sum = @ # Initialize the sum
i =08 # Initialize the number to sum

while 1 < 20:
i=1i+1
i if i == 10 or i == 11: .
continue ()()f]tlf]l]f?
sum = sum + i

print("The sum is:", sum)
print("i =", i) 17

Part | — Introduction to Python

o Python Functions

18

Function Definition in Python

I
e General syntax:

def function name(parameters):
block of statements

o Lambda expression:

lambda input parameters: returned expression

def

my abs{x):
if x »= @:
return x
else:
return -x

» Lambda functions are usually used temporally without a

formal name.

lambda a
print(x(5))

¥ = : a + 16 x = lambda a, b

print(x(5, &))

:a *®b

19

Part | — Introduction to Python

o Python Classes

20

Python: Object-based Language

B
Defining a Class

Base Class - Object

................

Create

+ Dog Instance Rayne

I il & »
Properties Methods Property values Methods
Color Sit Color: Gray, White, and Black Sit
Eye Color Lay Down Eye Color. Blue and Brown Lay Down
Height Shake Height. 18 Inches Shake
Length Come Length: 36 Inches Come
Weight Weight 30 Pounds

« Matlab is a function-based programming language.

 Differently, Python is a object-based language. We can define objects
under classes. Then and the properties and methods (functions) can be
easily called.

« Also, for Python, many packages online well-written by others are free
to download and be installed. 21

Python Class Definition

Example

Create a class named MyClass, with a property named x:

class MyClass:

®x =5

Create an object named p1, and print the value of x:

pl = MyClass()
print(pl.x)

class Person:
def init (self, name, age):

self.name = name

self.age = age Properties

def myfunc(self): methOdS

print("Hello my name is " + self.name)

pl = Person("John", 38&)

pl.myfunc()

« The init_ () function is called automatically every time the class is being used to

Ccreate a new object.

* The self parameter is a reference to the current instance of the class, and is used to

access variables that belongs to the class.

It does not have to be named self , you can call it whatever you like, but it has to be

the first parameter of any function in the class.

» There are other properties of Python class such as inheritance, which will not be

covered in detail here.

22

Part | — Introduction to Python

o An Python package example: skrf

23

RF Library in Python

e Found a library in Python called skrf, which is free to
Install and use. ()

e This library can handle S-parameters and Z-parameters.

= Networks 800

—— ring slot, 221
Introduction 600
Creating Metworks
; . 400 f
Basic Properties /
f
Slicing — 200 /;"
- E __,-‘/
Ploting o I
o 0 —t
Operators D —_
=

Connecting Multi-ports = =200 /
Interpolation and Concatenation —400 ‘l'

|
Reading and Writing |

-600 !
Other Parameters
Conclusion -800
1 o s n ne

References 15 80 85 90 a5 100 105 110

Freguency (GHz)

24

https://scikit-rf.readthedocs.io/en/latest/tutorials/Networks.html#Introduction

Basic Properties
B

import skrf as rf «—— Import the package
rf.Network(pdn/ASUS-MST BrdwithCap.s31p')<+<—— Load PDN file

asus_brd|=

Now asus_brd is a rf.Network object, and it can directly use
all functions and properties within rf.Network class.

asus_brd

31-Port Network:

9.+8.7 50.+0.7
50.+8.j 50.+0.j 50.+0.] 50.+08.] 50.+48.j 50.+0.j 58.+0.] 50.+8.7 50.+8.7
50.+8.j 50.+9.j 50.+0.j 50.+8.] 50.+48.j 50.+0.j 58.+0.] 58.+0.7 50.+8.7
S50.+8.7 58.+9.7 58.+0.7 50.+0.7]

'ASUS-MST_BrdwithCap', ©.8-1800.8 MHz, 411 pts, z8=[50.+0.j 58.+8.7 50.+0.7 50.+0.7 50.+08.7 50.+0.j 50.40.7 5

asus_brd. frequency

asus_brd.s

9.0-1000.8 MHz, 411 pts

array([[[-2.93537019+1.387146152-05j, ©.06458921+1.82375709=-067,
B.06456268+5.74281789%e-877, ..., ©.06443746-9.385820096e-887,
0.06451074-1.85057534e-079, ©.064485642-9.300904712-987], asus brd.z
[©.86458921+1.02375788e-0867, -08.93537844+1.882755208e-967, _
8.06456186+5.54742353e-8773, ..., ©.06448733-1.722420084e-877, array([[[2.28923460e2+04-8.37241093e+08575,
8.86451099-2.29224335e-877, ©.0644868 -1.84832375e-077], 7.28917830e+04-8.372411120+057,
[©.06456268+5.74281784e-87j, 0.06456186+5.54742367=-071, 2.28922926€+04-8.37241096e+05], ...,
-0.93537437+1.57018286e-063, ..., ©.06448793-1.09455496e-07], 2.28932848e+04-8.37241070e+05]
8.86451267-1.17434791e-073, ©.9644868 -1.11680858e2-071], 2.28930473e+04-8.37241090e+055,
- 2.28931880e+04-8.37241071e+055],
asus_brd.z@ [2.28917838e+84-8.37241112e+857,
2.2891221%e+84-8.37241130e+857,
a“”ay{fggg-+§-iJ gg-*g-i: gg-+g-i’ s gg-+g-iJ gg-*g-iJ gg-*g-i}’ 2.289173060+04-8.37241114e4055, ...,
.+8.75, .+0.75, - I .+8.73, _+0.9, .+8.57, .
[58.+a.§J 5a.+e.;, 5a.+e.;, e, 5@.+a.§J 53.+e.§, 5a.+e.;], 2.28927228e+04-8.5724108%+05],
e, 2.28924853e+084-8.37241188e+857,
[50.+@.7, 58.+8.j, 508.+0.3, ..., 50.+0.3, 50.+0.3, 50.+08.3], 2.28926261e+084-8.37241090e+855],
[50.+@.7, 50.+8.j, 508.+8.3, ..., 50.+0.3, 50.+0.j, 50.+0.3],

[50.+@.5, 50.+0.3, 58.+9.3, ..., 50.+0.3, 50.+0.j, 50.+0.3]]) 25

Plotting

Obtain frequency Obtain Z-para

plot Z11 in log scale l l
plt.semilogx(fasus_brd.frequency.{,asus_brd. z_dEI[:,8,8])

plot 5-parameter

Magnitude (dB}

asus_brd.plot_s db(m=@,n=1) plt.show()
120 -
—— ASUS-MST BrdwithCap, 512
100 -
m .
m -
4'] 4
m 4
D 4
_2{: -
0 200 400 600 800 1000 10° 10° 10¢ 10° 108
Frequency (MHz)

26

Interpolation and Concatenation

I
Define a Frequency object

new freq = rf.frequency.Frequency(start=l, stop=1000, npoints=281, unit='mhz', sweep type='log')
new_freqg

1.8-1000.8 MHz, 201 pts

Directly call ‘interpolate’ function for frequency interpolation

asus_brd _new = asus_brd.interpolate{new freq)
asus_brd new

31-Port Network: 'ASUS-MST BrdwithCap', 1.8-1008.8 MHz, 201 pts, z8=[50.+8.j 50.+08.j 56.+0.j 50.+0.j 50.+0.j 50.+0.j 50.40.7 5

9.40.7 50.+8.7
50.+0.j 50.+0.j 50.+0.j 58.+0.j 50.+0.j 50.+0.j 50.+0.j 50.+0.j 50.+0.7j
50.+0.7 50.+0.7 50.+0.7 58.+0.j 50.+0.] 50.+0.7 50.+0. 50.+0. 50.+0.]
50.+0.j 50.+0.7 50.+0.5 50.+0.5]

Combine Networks which cover different frequency ranges

from skrf.data import wr2p2_line, wrlp5_line

big_line = rf.stitch{wr2p? line, wrlp5_line)
. . — I
big line

2-Port Metwork: 'wr2p2,line', 338.8-758.8 GHz, 482 pts, z@=[5@.+@8.] 58.+8.3]

27

Connecting Multi-ports

merged_network

16-Port Network: "ASUS-MST BrdwithCap', 1.8-1@88.8 MHz, 281 pts,
B.+8.7 58.+9.7
50.+8.7 50.+8.7 50.+0.7 50.+0.7 50.+0.7 50.+0.7 50.+0.7]

decapl short

1-Port Network: "GRM153Re8G1l@5MES5', 1.@-1€69.8 MHz, 281 pts, z@

new_net = rf.network.connect(merged network,l,decapl short,@)

S Connect two ports of two network

15-Port Network: "ASUS-MST BrdwithCap', 1.8-1808.8 MHz, 281 pts,
@.+8.7 50.+9.73
S9.+8.7 58.+0.7 58.+49.7 58.+8.j 50.+8.7 58.+0.7]

Inner connect two ports of one network

asus_brd_mergeIC = pf.network.innerconnect(asus_brd,®,1)

asus_brd mergelC 31-p0rt => 29-p0rt

29-Port Network: 'ASUS-MST BrdwithCap®, @.8-1800.8 MHz, 411 pts, z@=[5@
@.+8.7 58.+8.7
50.+48.7 8.+48.7 58.+8.] 50.+0.] 50.+8.] 58.+48.7 50.+48.7 59.+8.7 50.+8.7
5@.+8.7 58.+49.7 58.+9.] 50.+8.] 50.+8.] 58.4+8.7 50.490.] 59.+8.7 50.+8.7
58.+8.7 58.49.7]

28

Summary of Part |
B

e Python is a high-level programming language which is
free and open-source, and convenient to use.

o When you want some functions, try to search and
download existing packages online first.

29

Part 1l — Introduction to Machine Learning
B

o Brief introduction to neural network and deep learning

o How neural network is trained — gradient descent and
backpropagation

o A simple tutorial of using Pytorch for machine learning
programming in Python

30

Part 1l — Introduction to Machine Learning
B

o Brief introduction to neural network and deep learning

31

Neural Network (NN)

EEE
% w, * The structure of neural network is similar to
X, W, neuron structure in human brain.
% 7 « The model has an input layer, an output layer
: "3 and an arbitrary number of hidden layers.
« Each neuron can be regarded as a nonlinear

X WK
K function (activation function) of the weighted

K sum of its inputs.

y= OO wz;) = f(w'x)
w0 * Pros:
» High accuracy, capacity and robustness.
Hidden

» Can achieve complex non-linearity.

O\ - Cons:
nput % > Need large data size

> Need high computational ability.
> Black-box model and hard to understand.

» Applications: regression and classification.

 How can neural network be trained?

32

Image Recognition

For human beings, it is intuitive and easy to recognize the kid in the picture. Even if
the position and environment changes, we don’t need to learn the concept again.

But for computers, it is hard to recognize it if the picture changes for a little bit. And it
is hard to build a formal rule about how a kid looks like.

Intuitively, we can feel there exists some hierarchy or conceptual structure in the
picture, like from pixels to edges, and ears, mouth, nose, head and etc. Human beings
recognize pictures mainly by high-level features, not by individual pixels. 33

2D Convolution

Input

h

Kernel

v Output
aw 4+ bxr + bw 4+ ex + cw 4+ dr +
ey + f= fu + gz gy + hz
ew + fr + fw + gz + gw + hr +
iv + iz ju + k= ky + Iz

A window smaller than image size
slides through the image and multiply
with each small area it goes through.

We can detect small and meaningful
features such as edges with kernels
that occupy only tens or hundreds of
pixels.

Using a couple of convolutional
layers in series helps extract more
complex features.

This also reduces the memory
requirements of the model and
Improve its statistical efficiency.

34

Max Pooling
B

I

X

- s =
N =1 O O
N = O N
O] 0 | W

W

Y

Max pooling partitions the input image into a set of non-overlapping rectangles and,
for each such sub-region, outputs the maximum.

The pooling layer serves to progressively reduce the spatial size of the representation,
to reduce the number of parameters and amount of computation in the network, and
hence to also control overfitting.

It is common to periodically insert a pooling layer between successive convolutional
layers in a CNN architecture.

35

Convolutional Neural Network (CNN)

Bl pbild
0
Lo sunset [P o
I | —
—u
—] e\ ° o R
° o -
| o ~o dog Pdog
- —
Q o
o o EEE—
° ° cat [p_,
o o —
. : [=] =]
convolution + max pooling vec | \:
nonlinearity] o
| |
convolution + pooling layers fully connected layers Nx binary classification

» A CNN consists of an input and an output layer, as well as multiple hidden layers. The
hidden layers of a CNN typically consist of convolutional layers, pooling layers, fully
connected layers and normalization layers.

« A CNN contains so many parameters that it needs large amounts of data to be trained
well. Usually at least millions of images are required to train a good image classifier like
Google. In deep learning, having more data is more significant than having a better
model!

36

Part 1l — Introduction to Machine Learning
B

o How neural network is trained — gradient descent and
backpropagation

37

Optimization Method — Gradient Descent

I
o When there is no closed form, we have to use computational

approach such as gradient descent.

9l = 0° — aVf(8°)
The cost function must be differentiable;
0 1s updated in the opposite direction of the gradient.

f(0) \ f(6) \
Initial 8° 0 Initial 8° 0
Learning rate 1s too small: Learning rate 1s too large:
* Convergence is very slow; » May fluctuate around the minimum.

* May converge at a local minimum.
38

Training Method: Backpropagation (1 / 2)

I @
Review:
- o dz_dzdy
Chain rule of calculus: i dyda
* Gradient descent method to update weights: 6; := 6, — 7 - %E(Q)
]

where n is learning rate, and E (0) is loss function that needs to be minimized.

d
X W Derivative of f(u): % — f(u)(1 — f(u)) = flu)f(—u)
Xy Wy
3 Wi y Loss function: E = %(t —y)? = %(f — f(wTx))?
';K W JE B oF oy oJu

dw; dy Ou Ow t: actual output
= (y—1)-y(l —y) -z

<

1 - :
flu) = [r (logistic function) W — Wl g (g #) .yl - y)-x

K
y=FQ_ wiz:) = f(wx)

39

Training Method: Backpropagation (2 / 2)
I
K
Input layer Hidden layer Output layer hi = f(u;) = f (Z Wi T | M
1
x; O Oh, O » N E = 9 jzi:(yj tjjz
25 0 O 7, v = ful) = O wih)
O h; i1
x; O O y; ‘
oF OF Ov; ou;
- &w;j - ﬂyj.ﬂu} 3u,;j=(yj_tj} yi(l— ;) - hy
xg O fw,) (W) O yu — ‘
wi;uw - w;j — - (yj _tj] 'yj{I _y_'il} hi;
OE L 9E ody; Ouj on, ou; U
m =le[:ﬂyj] ﬂujj ahtjaui) ﬂwh _jz;[(yj_tﬂ}'yj[]' yj) ﬂ?;j]hl[]-_h}a:k
M
wﬁw - wﬂ# — N Z[{yj —t5) -y (1 — uy) wi_;.] hi(1 — h;) - x
J-1 40

Part 1l — Introduction to Machine Learning
B

o A simple tutorial of using Pytorch for machine learning
programming in Python

41

Example of Pytorch — Linear Regression (1/3)

import torch
import torch.nn as nn Irnportrnodules
impoart numpy as np

import matplotlib.pyplot as plt

Hyper-parameters
input_size = 1
output_size = 1 Define hyper-parameters
num_epochs = &4
learning_rate = @.881
Training dataset

Toy dataset
¥_train = np.array([[3.3], [4.4], [5.5], [&.71], [&.93], [4.168],

[9.779], [5.182]1, [7.59], [2.167], [7.842],

[18.791], [5.313]1, [7.997]1, [3.1]], dtype=np.float32)

y_train = np.array([[1.7], [2.76], [2.89], [3.19], [1.694], [1.573],
[3.368], [2.596], [2.531, [1.221], [2.8271,
[3.465], [1.65], [2.9084], [1.3]]1, dtype=np.fleat32)

https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/01-basics/linear_regression/main.py

Example of Pytorch — Linear Regression (2/3)

Linear regression model

Directly use nn.linear module

model = nn.Linear(input_size, output_size)

Loss and optimizer

criterion = m.MsELoss() USE NN.MSELoss() function as objective function
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) Use S(B[)()pthnizer

Train the model

for epoch in range{num_epochs):
Convert numpy arrays to torch tensors
inputs = torch.from_numpy(x_train)

Create a Tensor from numpy array

targets = torch.from_numpy{y_train)

Forward pass
outputs = model(inputs) Calculate output
loss = criterlon{outputs, targets) Calculate loss

Backward and optimize
optimizer.zero _grad()

loss.backward() Calculate gradient and update parameters

optimizer.step()

if (epoch+l) ¥ 5 ==
orint ("Epoch [{}/{}], Loss: {:.4f}".format{epoch+1l, num_epochs, loss.item{))})

43

Example of Pytorch — Linear Regression (3/3)

) model has been trained
Plot the graph

predicted = model(torch.from_numpy(x_train)}).detach().numpy()

plt.plot{x_train, v_train, 'ro", label="0Original data')

plt.plot{x_train, predicted, label="Fitted line") o ongnalcata
plt.legend{)

plt.show() 5

Save the model checkpoint Save the trained model

torch.save{model.state_dict(), 'model.ckpt®)

01

* When using Python for machine learning applications, we don’t
need to rewrite the gradient descent and backpropagation algorithm
by ourselves.

* We just need to use the existing modules in the packages such as
PyTorch, Tensorflow, which makes it convenient.

Example of Pytorch — CNN

I
o Complete code can be found at:

Convolutional neural network (two convolutional layers)
class Convhlet(nn.Module):
def init (self, num classes=18):
super{Conviet, self). init ()
self.layerl = nn.Sequential(
nn.Conv2d(1, 16, kernel_size=5, stride=1, padding=2)},
nn.BatchNorm2d({16),
nn.RelU{),
nn.MaxPool2d(kernel size=2, stride=2))
self.layer2 = nn.Sequential(
nn.Conv2d({16, 32, kernel_size=5, stride=1, padding=2),
nn.BatchlNorm2d(32),
nn.RelU{),
nn.MaxPool2d(kernel size=2, stride=2))

self.fc = nn.linear(7%7%22, num _classes)

def forward(self, x):
self.layerl(x)
self.layer2{out)

out

out
out = out.reshape(out.size(@), -1)
self.fc(out)

return out

out

* Class inheritance
« Self-defined neural network

Loss and optimizer
criterion = nn.CrossEntropyloss()

optimizer = torch.optim.Adam(model.parameters(), lr=learning rate)

Train the model
total_step = len(train_loader)
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)

labels

labels.to(device)

Forward pass
outputs = model(images)

loss = criterion(outputs, labels)

Backward and optimize
optimizer.zero_grad()
loss.backward()

optimizer.step()
if (is+1) % 100 == 8:

print ("Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}"

.format(epoch+1, num_epochs, i+1, total step, loss.item()}})

45

https://github.com/yunjey/pytorch-tutorial/blob/master/tutorials/02-intermediate/convolutional_neural_network/main.py

Example of Tensorflow
B

e Can refer to this tutorial on GitHub

46

https://github.com/aymericdamien/TensorFlow-Examples

Summary of Part 11
B

e There are many available code example or template on
, which can be downloaded freely.

e You just need to slightly modify the code to fit your
desired applications.

47

https://github.com/

Questions?

48

